Tuesday, July 23, 2019
Network Measurement Laboratory Lab Report Example | Topics and Well Written Essays - 750 words
Network Measurement Laboratory - Lab Report Example This experiment is aimed to experimentally determine the Thevenin and Norton equivalent circuit of a Black box network which consists of resistive elements and voltage source. Furthermore, the value of the load resistance connected across the two terminals of the black box will be determined such that maximum power is transferred from the network load. Finally, the objective of the experiment is to determine certain network parameters. This experiment will aid the students to understand the behavior of given circuits and explain their outputs, understand Thevenin and Norton principles, the principle of maximum power transfer and their implications for practical systems. Thevenin Theorem states that: ââ¬Å"any linear terminal circuit is equivalent to an ideal voltage source Vth in series with a resistance Rth where Vth is open circuit voltage the two terminals and Rth is the ratio of open-circuit voltage to the short-circuit current (Isc) at the terminalsâ⬠. On the other hand, an alternative proposition to Theveninââ¬â¢s theory, Nortonââ¬â¢s theorem states that ââ¬Å"Any linear resistive two terminal circuit is equivalent to a parallel combination of an ideal current source In and a resistance Rn, where In is the short-circuit current at the terminals and Rn is the ratio of the open-circuit voltage to the short-circuit currentâ⬠. These theorems are illustrated in the circuit below Measurements for the values of 12 VDC and 18 VDC of the excitation voltages were then made. The Thà ©venin Circuit Component was then turned over and a schematic diagram representation drawn as shown below A 10Kï â" variable resistor was connected across the output of the black box and the current and the voltage across the resistor measured. The resistance was varied the current and voltage recorded as a function of the resistance. The current and the voltmeter measurement
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.